Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chinese Traditional and Herbal Drugs ; 54(6):2005-2011, 2023.
Article in Chinese | EMBASE | ID: covidwho-20244964

ABSTRACT

Compound Qinlan Oral Liquid (,CQOL) is derived from Yinqiao San (), which is composed of Jinyinhua (Lonicerae Japonicae Flos), Huangqin (Scutellariae Radix), Lianqiao (Forsythiae Fructus) and Banlangen (Isatidis Radix). It is a common clinical herbal medicine for clearing heat and detoxification, and has antiviral effects. By reviewing the active ingredients of CQOL and the research progress on its anti-influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficacy, with view to providing a basis for the clinical use of CQOL in treatment of respiratory diseases caused by SARS-CoV-2.Copyright © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

2.
Chinese Traditional and Herbal Drugs ; 54(6):2005-2011, 2023.
Article in Chinese | EMBASE | ID: covidwho-2320600

ABSTRACT

Compound Qinlan Oral Liquid (,CQOL) is derived from Yinqiao San (), which is composed of Jinyinhua (Lonicerae Japonicae Flos), Huangqin (Scutellariae Radix), Lianqiao (Forsythiae Fructus) and Banlangen (Isatidis Radix). It is a common clinical herbal medicine for clearing heat and detoxification, and has antiviral effects. By reviewing the active ingredients of CQOL and the research progress on its anti-influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficacy, with view to providing a basis for the clinical use of CQOL in treatment of respiratory diseases caused by SARS-CoV-2.Copyright © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

3.
Vaccines (Basel) ; 11(4)2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2304217

ABSTRACT

SARS-CoV-2 vaccinations were initially shown to substantially reduce risk of severe disease and death. However, pharmacokinetic (PK) waning and rapid viral evolution degrade neutralizing antibody (nAb) binding titers, causing loss of vaccinal protection. Additionally, there is inter-individual heterogeneity in the strength and durability of the vaccinal nAb response. Here, we propose a personalized booster strategy as a potential solution to this problem. Our model-based approach incorporates inter-individual heterogeneity in nAb response to primary SARS-CoV-2 vaccination into a pharmacokinetic/pharmacodynamic (PK/PD) model to project population-level heterogeneity in vaccinal protection. We further examine the impact of evolutionary immune evasion on vaccinal protection over time based on variant fold reduction in nAb potency. Our findings suggest viral evolution will decrease the effectiveness of vaccinal protection against severe disease, especially for individuals with a less durable immune response. More frequent boosting may restore vaccinal protection for individuals with a weaker immune response. Our analysis shows that the ECLIA RBD binding assay strongly predicts neutralization of sequence-matched pseudoviruses. This may be a useful tool for rapidly assessing individual immune protection. Our work suggests vaccinal protection against severe disease is not assured and identifies a potential path forward for reducing risk to immunologically vulnerable individuals.

4.
Acta Facultatis Medicae Naissensis ; 39(4):410-421, 2022.
Article in English | EMBASE | ID: covidwho-2282439

ABSTRACT

Introduction: Biologics (biopharmaceuticals) present new promising therapies for many diseases such as cancers, chronical inflammatory diseases and today's biggest challenge - COVID-19. Research: Today, most biologics have been synthetized using modern methods of biotechnology, in particular DNA recombinant technology. Current pharmaceutical forms of protein/peptide biopharmaceuticals are intended for parenteral route of administration due to their instability and large size of molecules. In order to improve patient compliance, many companies are working on developing adequate forms of biopharmaceuticals for alternative, non-invasive routes of administration. The aim of this work is to review current aspirations and problems in formulation of biopharmaceuticals for alternative (non-parenteral) routes of administration and to review the attempts to overcome them. These alternative routes of administration could be promising in prevention and treatment of COVID-19, among other serious diseases. Conclusion(s): The emphasis is on stabilizing monoclonal antibodies into special formulations and delivery systems;their application should be safer, more comfortable and reliable. When it comes to hormones, vaccines and smaller peptides, some companies have already registered drugs intended for nasal and oral delivery.Copyright © 2022 Sciendo. All rights reserved.

5.
Expert Rev Clin Pharmacol ; 15(11): 1327-1341, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2247914

ABSTRACT

INTRODUCTION: Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED: This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION: Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately 20 years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.


Subject(s)
COVID-19 , Humans , RNA, Small Interfering/pharmacology , COVID-19/therapy , SARS-CoV-2 , Genetic Therapy
6.
Heliyon ; 8(12): e12333, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2179026

ABSTRACT

In terms of treatment, a particularly targeted drug is needed to combat the COVID-19 pandemic. Although there are currently no specific drugs for COVID-19, traditional Chinese medicine(TCM) is clearly effective. It is recommended that through data analysis and mining of TCM cases (expert experience) and population evidence (RCT and cohort studies), core prescriptions for various efficacy can be obtained. Starting from a multidimensional model of regulating immunity, improving inflammation, and protecting multiple organs, this paper constructs a multidimensional model of targeted drug discovery, integrating molecular, cellular, and animal efficacy evaluation. Through functional activity testing, biophysical detection of compound binding to target proteins, multidimensional pharmacodynamic evaluation systems of cells (Vero E6, Vero, Vero81, Huh7, and caca2) and animals (mice infected with the new coronavirus, rhesus macaques, and hamsters), the effectiveness of effective preparations was evaluated, and various efficacy effects including lung moisturizing, dehumidification and detoxification were obtained. Using modern technology, it is now possible to understand how the immune system is controlled, how inflammation is reduced, and how various organs are protected. Complete early drug characterization and finally obtain effective targeted TCM. This article provides a demonstration resource for the development of new drugs specifically for TCM.

7.
Front Pharmacol ; 13: 893635, 2022.
Article in English | MEDLINE | ID: covidwho-2113657

ABSTRACT

The mitogen-activated protein kinase (MEK) inhibitor zapnometinib is in development to treat acute viral infections like COVID-19 and influenza. While the antiviral efficacy of zapnometinib is well documented, further data on target engagement/pharmacodynamics (PD) and pharmacokinetics (PK) are needed. Here, we report zapnometinib PK and PD parameters in mice, hamsters, dogs, and healthy human volunteers. Mice received 25 mg/kg/day zapnometinib (12.5 mg/kg p. o. twice daily, 8 h interval). Syrian hamsters received 30 mg/kg (15 mg/kg twice daily) or 60 mg/kg/day once daily. Beagle dogs were administered 300 mg/kg/day, and healthy human volunteers were administered 100, 300, 600 and 900 mg zapnometinib (once daily p. o.). Regardless of species or formulation, zapnometinib maximum plasma concentration (Cmax) was reached between 2-4 h after administration with an elimination half-life of 4-5 h in dogs, 8 h in mice or hamsters and 19 h in human subjects. Doses were sufficient to cause up to 80% MEK inhibition. Across all species approximately 10 µg/ml zapnometinib was appropriate to inhibit 50% of peripheral blood mononuclear cells (PBMC) MEK activity. In mice, a 50%-80% reduction of MEK activity was sufficient to reduce influenza virus titer in the lungs by more than 90%. In general, while >50% MEK inhibition was reached in vivo at most doses, 80% inhibition in PBMCs required significantly higher doses and appeared to be the practical maximal level obtained in vivo. However, the period of reduced phosphorylated extracellular-signal regulated kinase (pERK), a measure of MEK inhibition, was maintained even after elimination of zapnometinib from plasma, suggesting a sustained effect on MEK consistent with regulatory effects or a slow off-rate. These data suggest a target plasma Cmax of at least 10 µg/ml zapnometinib in further clinical studies.

8.
Methods in Molecular Biology ; 2547:v-vii, 2022.
Article in English | EMBASE | ID: covidwho-2058651
9.
Arab J Chem ; 15(11): 104302, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041577

ABSTRACT

Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.

10.
Handb. Exp. Pharmacol. ; 275:V-X, 2022.
Article in English | EMBASE | ID: covidwho-1929369
11.
Expert Opin Biol Ther ; 22(2): 235-243, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1821662

ABSTRACT

BACKGROUND: P044 is a proposed biosimilar candidate of Teriparatide for reference medicine, Forsteo®. This study was designed to evaluate the Pharmacokinetic/Pharmacodynamic (PK/PD) bioequivalence between P044 and Forsteo®. METHODS: In this randomized, open-label, single-dose, crossover study, 66 healthy female subjects were randomized to receive P044 and Forsteo®. The primary PK endpoints of the study were the area under the concentration versus time from zero to infinity (AUC0-inf) and maximum plasma concentration (Cmax). Secondary endpoints included area under the concentration versus time from zero to the last quantifiable concentration (AUC0-last) and Cmax for PD parameter, additional PK parameters and safety. RESULTS: Sixty-six subjects were enrolled in the study and baseline demographics were similar between the two treatments. The two treatments presented similar PK/PD parameters and the 90% confidence interval for primary and secondary endpoints were within the bioequivalence acceptance range (80.00-125.00%) for all parameters. None of the subjects experienced serious adverse event, and all of the reported adverse events were mild and similar between two treatments. CONCLUSIONS: This study demonstrated the PK/PD similarity of P044 to reference medicine, Forsteo® and safety profiles were comparable between treatments. TRIAL REGISTRATION: EudraCT Number: 2019-004477-82.


Subject(s)
Biosimilar Pharmaceuticals , Biosimilar Pharmaceuticals/adverse effects , Cross-Over Studies , Double-Blind Method , Female , Healthy Volunteers , Humans , Therapeutic Equivalency
12.
Chinese Pharmacological Bulletin ; 37(7):911-916, 2021.
Article in Chinese | Scopus | ID: covidwho-1792324

ABSTRACT

Studies have shown that COVID-19 patients infected with SARS-CoV-2 have severe pulmonary inflammation and cytokine storm, so the treatment of cytokine storm is an important part of rescuing critically ill patients with COVID-19. As an important cause of death, the preclinical study of cytokine storm is essential, and related experiments in vivo and in vitro are also the only way to develop new drugs for COVID-19 in the future. This paper reviews the in vitro and in vivo experimental methods of cytokine storm research articles at home and abroad in recent years, including the establishment of animal models, cell evaluation methods, pharmacodynamic evaluation indicators, etc., in order to provide reference and guidance for the experimental design methods of cytokine storm. © 2021 Publication Centre of Anhui Medical University. All rights reserved.

13.
Intensive Care Med ; 46(12): 2284-2296, 2020 12.
Article in English | MEDLINE | ID: covidwho-1451948

ABSTRACT

Current literature addressing the pharmacological principles guiding glucocorticoid (GC) administration in ARDS is scant. This paucity of information may have led to the heterogeneity of treatment protocols and misinterpretation of available findings. GCs are agonist compounds that bind to the GC receptor (GR) producing a pharmacological response. Clinical efficacy depends on the magnitude and duration of exposure to GR. We updated the meta-analysis of randomized trials investigating GC treatment in ARDS, focusing on treatment protocols and response. We synthesized the current literature on the role of the GR in GC therapy including genomic and non-genomic effects, and integrated current clinical pharmacology knowledge of various GCs, including hydrocortisone, methylprednisolone and dexamethasone. This review addresses the role dosage, timing of initiation, mode of administration, duration, and tapering play in achieving optimal response to GC therapy in ARDS. Based on RCTs' findings, GC plasma concentration-time profiles, and pharmacodynamic studies, optimal results are most likely achievable with early intervention, an initial bolus dose to achieve close to maximal GRα saturation, followed by a continuous infusion to maintain high levels of response throughout the treatment period. In addition, patients receiving similar GC doses may experience substantial between-patient variability in plasma concentrations affecting clinical response. GC should be dose-adjusted and administered for a duration targeting clinical and laboratory improvement, followed by dose-tapering to achieve gradual recovery of the suppressed hypothalamic-pituitary-adrenal (HPA) axis. These findings have practical clinical relevance. Future RCTs should consider these pharmacological principles in the study design and interpretation of findings.


Subject(s)
Glucocorticoids , Respiratory Distress Syndrome , Humans , Hypothalamo-Hypophyseal System , Methylprednisolone , Pituitary-Adrenal System , Respiratory Distress Syndrome/drug therapy
14.
J Pharm Sci ; 109(12): 3574-3578, 2020 12.
Article in English | MEDLINE | ID: covidwho-745903

ABSTRACT

SARS-CoV-2 utilizes the IMPα/ß1 heterodimer to enter host cell nuclei after gaining cellular access through the ACE2 receptor. Ivermectin has shown antiviral activity by inhibiting the formation of the importin-α (IMPα) and IMPß1 subunits as well as dissociating the IMPα/ß1 heterodimer and has in vitro efficacy against SARS-CoV-2. Plasma and lung ivermectin concentrations vs. time profiles in cattle were used to determine the apparent plasma to lung tissue partition coefficient of ivermectin. This coefficient, together with a simulated geometric mean plasma profile of ivermectin from a published population pharmacokinetic model, was utilized to develop a minimal physiologically-based pharmacokinetic (mPBPK) model. The mPBPK model accurately described the simulated ivermectin plasma concentration profile in humans. The mPBPK model was also used to simulate human lung exposure to ivermectin after 12, 30, and 120 mg oral doses. The simulated ivermectin lung exposures reached a maximum concentration of 772 ng/mL, far less than the estimated 1750 ng/mL IC50 reported for ivermectin against SARS-CoV-2 in vitro. Further studies of ivermectin either reformulated for inhaled delivery or in combination with other antivirals with differing mechanisms of action is needed to assess its therapeutic potential.


Subject(s)
Antiviral Agents/pharmacokinetics , Coronavirus Infections/drug therapy , Ivermectin/pharmacokinetics , Lung/metabolism , Pneumonia, Viral/drug therapy , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/metabolism , COVID-19 , Cattle , Computer Simulation , Coronavirus Infections/metabolism , Drug Repositioning , Humans , Ivermectin/administration & dosage , Ivermectin/blood , Ivermectin/pharmacology , Models, Biological , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2
15.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2257-2264, 2020 May.
Article in Chinese | MEDLINE | ID: covidwho-378552

ABSTRACT

There is urgent need to discover effective traditional Chinese medicine(TCM) for treating coronavirus disease 2019(COVID-19). The development of a bioinformatic tool is beneficial to predict the efficacy of TCM against COVID-19. Here we deve-loped a prediction platform TCMATCOV to predict the efficacy of the anti-coronavirus pneumonia effect of TCM, based on the interaction network imitating the disease network of COVID-19. This COVID-19 network model was constructed by protein-protein interactions of differentially expressed genes in mouse pneumonia caused by SARS-CoV and cytokines specifically up-regulated by COVID-19. TCMATCOV adopted quantitative evaluation algorithm of disease network disturbance after multi-target drug attack to predict potential drug effects. Based on the TCMATCOV platform, 106 TCM were calculated and predicted. Among them, the TCM with a high disturbance score account for a high proportion of the classic anti-COVID-19 prescriptions used by clinicians, suggesting that TCMATCOV has a good prediction ability to discover the effective TCM. The five flavors of Chinese medicine with a disturbance score greater than 1 are mainly spicy and bitter. The main meridian of these TCM is lung, heart, spleen, liver, and stomach meridian. The TCM related with QI and warm TCM have higher disturbance score. As a prediction tool for anti-COVID-19 TCM prescription, TCMATCOV platform possesses the potential to discovery possible effective TCM against COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , COVID-19 , Computational Biology , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional , Mice , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL